
Ab initio elastic stiffness of nano-laminate (MxM'
2−x)AlC (M and M' = Ti, V and Cr) solid

solution

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 2819

(http://iopscience.iop.org/0953-8984/16/16/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 14:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 2819–2827 PII: S0953-8984(04)76212-8

Ab initio elastic stiffness of nano-laminate
(MxM′

2−x)AlC (M and M′ = Ti, V and Cr) solid
solution

J Y Wang1,2 and Y C Zhou1

1 Shenyang National Laboratory for Materials Science, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
2 International Centre for Materials Physics, Institute of Metal Research, Chinese Academy of
Sciences, Shenyang 110016, People’s Republic of China

Received 6 February 2004
Published 8 April 2004
Online at stacks.iop.org/JPhysCM/16/2819
DOI: 10.1088/0953-8984/16/16/006

Abstract
We have investigated the elastic stiffness and electronic band structure of nano-
laminate (MxM′

2−x )AlC solid solutions, where M and M′ = Ti, V and Cr, by
means of the ab initio pseudopotential total energy method. The second-order
elastic constants, bulk moduli and anisotropic Young’s moduli are computed
for the solid solutions, in which x is changed from 0 to 2 in steps of 0.5. The
bulk moduli of (MxM′

2−x )AlC is found to be approximately the average of the
two end M2AlC and M′

2AlC phases as the substitution content x , as well as
the valence electron concentration (VEC), varies in the compounds. On the
other hand, the shear modulus c44, which by itself represents a pure shear shape
change and has a direct relationship with hardness, saturates to a maximum
as VEC is in the range 8.4–8.6. It implies that solid solution hardening
may be operative for alloys having VEC values in this range. Furthermore,
trends in the elastic stiffness are interpreted in terms of the electronic band
structure. We show that monotonically incrementing the bulk moduli is
attributed to the occupying states involving transition-metal d–Al p covalent
bonding and metal-to-metal dd bonding. The maximum in c44, on the other
hand, originates from completely filling the shear resistive transition-metal d–
Al p bonding states. Most importantly, we predict a method to optimize the
desired elastic stiffness by properly tuning the valence electron concentration
of (Mx M′

2−x)AlC ceramics.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Among the so-called M2AX phases (where M is an early transition metal atom, A is an A-group
element and X is carbon and/or nitrogen), Ti2AlC has been widely studied due to the fact that
it has overall advantages [1]. For example, it displays a combination of such properties as
high melting point, low density, high bulk modulus, good thermal and electrical conductivity,
excellent thermal shock resistance and high temperature oxidation resistance,damage tolerance
and microscale ductility at room temperature, etc. Ti2AlC crystallizes in a space group of
P63/mmc symmetry and its crystal structure can be regarded as the nanoscale sheet of edge-
shared transition-metal carbide octahedra being weakly bonded with the interleaved planar
close-packed Al atomic layers. According to this unique nano-laminate crystal structure,
Ti2AlC exhibits properties of both ceramics and metals and looks to be a promising candidate
for high temperature structural applications.

Great efforts have been made to optimize the desired mechanical properties over the last
few years for T2AlC. According to earlier investigations, possible solutions are addressed in
alloying and/or solid solution treatment. To achieve this goal, one can substitute elements on
the C site with N or O. Following this idea, Barsoum et al [2] succeeded in strengthening
Ti2AlC by synthesizing a Ti2AlC0.5N0.5 solid solution. Another way is to substitute Ti atoms
by other transition-metal atoms, such as V, Nb and Cr. The excellent miscibility of the solid
solution series on M sites in M2AlC (M = Ti, V, Nb and Cr) systems has been confirmed
both in experiments by Nowotny and coworkers [3], and in theoretical calculations by Sun
et al [4]. Very recently, Salama et al synthesized (Ti, Nb)2AlC and investigated its mechanical
properties [5]. Unfortunately, no solid solution hardening effect was operative in such a Ti–Nb–
Al–C system. Until now, only the theoretical bulk moduli of (MxM′

2−x )AlC compounds, where
M and M′ are Ti, V and Cr, have been presented [4]. Regardless of these achievements, it is
still not easy to design new complex nano-laminate ternary alloys with predictable mechanical
properties. Generalized results should be presented and examined in predicting the mechanical
properties of complex nonstoichiometric M–Al–C compounds.

Using the correlation between elastic stiffness and hardness, many theoretical predictions
on hard materials have been successfully made during the last few decades. Recently, Jhi et al
[6] found that the magnitude of the shear modulus c44, rather than the bulk modulus B and
shear modulus G, was a better hardness predictor for transition-metal carbonitrides TiCx N1−x .
They showed that the hardness and shear moduli c44 reached a maximum simultaneously
when the valence electron concentration is about 8.4 in TiCx N1−x , while the bulk and shear
moduli do not show the same trend. If the rule for transition-metal carbonitrides is true for the
presently studied compounds, information about the bulk moduli is not sufficient for predicting
the macro-mechanical properties of (MxM′

2−x)AlC, especially its hardness. In this paper, we
computed the second-order elastic constants, bulk modulus and anisotropic Young’s modulus
of (MxM′

2−x )AlC (M and M′ = Ti, V and Cr), and the trends in bulk modulus and shear
modulus c44 varying with VEC are presented. Furthermore, the results are well interpreted
by electronic band structure analysis. The aim of this work is to provide a predictive starting
point for an investigation of complex nonstoichiometric (MxM′

2−x)AlC compounds.

2. Computational details

A supercell with an isotropic substitution configuration should be examined to minimize the
difference between theoretical modelling and random substitution in solid solutions. To achieve
this, a large cell size is needed, e.g. a 2 × 2 × 1 supercell with 32 atoms. Unfortunately,
estimating elastic constants from first-principles calculations is still hard work because it
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Figure 1. Crystal structure of Mx M′
2−x AlC solid solution.

requires accurate methods for evaluating the total energy or stress accompanying the strain.
Therefore, we constructed the solid solution in the unit cell because of the current limits of our
available computers. Similar lattice configurations were used in modelling Ti3SiC2-base solid
solutions [7] and (MxM′

2−x)AlC compounds [4]. Figure 1 illustrates the crystal structure of
(Mx M′

2−x)AlC solid solution, where M and M′ are Ti, V and Cr, and x changes from 0 to 2 in
steps of 0.5. For x = 0.5 and 1.5, M and M′ sites are occupied by different types of transition-
metal element. For x = 1.0, we set M(2) and M′ sites as being occupied by the same type of
atom, as well as M(1) and M(3) sites being the same. Our computational results showed that
this configuration yielded the lowest total energy compared to other possible configurations.
In the present work, the VEC is tuned by changing the value of the substitution content x .

The present computation was based on density functional theory and the plane-wave
pseudopotential total energy method was utilized [8]. Interactions of electrons with ion cores
were represented by the Vanderbilt-type ultrasoft pseudopotential for transition metal M, M′, Al
and C atoms [9]. The electronic exchange–correlation energy was treated under the generalized
gradient approximation [10]. The plane-wave basis set cut-off was set as 450 eV for all cases.
The special point sampling integration over the Brillouin zone was employed by using the
Monkhorst–Pack method with a 10×10×2 special k-point mesh [11]. These parameters were
sufficient to lead to well converged total energy and geometrical configurations. Increasing
the plane-wave cut-off energy to 700 eV and the k-point mesh to 14 ×14 ×2 changed the total
energy by less than 0.005 eV/atom and the lattice constants by less than 0.02%.

Lattice parameters, including lattice constants and internal atomic coordinates, were
modified independently to minimize the total energy, interatomic forces and stresses of the unit
cell. The Brodyden–Fletcher–Goldfarb–Shanno (BFGS) minimization scheme [12] was used
in geometry optimization. The tolerances for geometry optimization were set as the difference
in total energy being within 5×10−6 eV/atom, the maximum ionic Hellmann–Feynman force
to being within 0.01 eV Å−1, the maximum ionic displacement to being within 5 × 10−4 Å
and the maximum stress to being within 0.02 GPa.
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The elastic coefficients were determined from first-principles calculation by applying a
set of given homogeneous deformations with a finite value and calculating the resulting stress
with respect to optimizing the internal atomic freedoms, as implemented by Milman et al [13].
The criteria for convergences of optimization on atomic internal freedoms was selected as the
difference in total energy being within 1×10−6 eV/atom, the ionic Hellmann–Feynman forces
being within 0.002 eV Å−1 and the maximum ionic displacement being within 1 × 10−4 Å.
For stoichiometric M2AlC phases with P63/mmc symmetry, two strain patterns, one with
non-zero ε11 and ε23 components and another with a non-zero ε33, brought out stresses related
to all five independent elastic coefficients. Whereas, for a (MxM′

2−x )AlC solid solution with
P3m1 symmetry, two strain patterns, one with non-zero ε33 and ε23 components and another
with a non-zero ε11, brought out stresses related to all seven independent elastic coefficients.
Three positive and three negative amplitudes were applied for each strain component, with
the maximum strain value of 0.5% in all computations. The elastic stiffness was determined
from a linear fit of the calculated stress as a function of strain. The compliance matrix, S,
was calculated as the inverse of the stiffness matrix, S = C−1. Other elastic mechanical
parameters, such as bulk modulus and Young’s modulus, were calculated from the compliance
matrix components.

3. Results and discussions

3.1. Dependence of elastic stiffness on VEC

Table 1 includes our computed second-order elastic constants for (Mx M′
2−x)AlC, where M

and M′ = Ti, V and Cr, respectively. The moduli c14 and c15 are less than 2 GPa for all
the solid solutions. Therefore they are not presented in table 1. Bulk moduli and anisotropic
Young’s moduli are calculated from the elastic compliance matrix and are also listed in table 1.
It is noted that the solid solutions are essentially elastically anisotropic because the Young’s
moduli are evidently different along directions on the basal plane and six-fold symmetry axis.
Our computed bulk moduli are about 30–40 GPa smaller than those presented by Sun et al
[4]. Although the discrepancy is still not fully understood, we attribute it to the computational
method employed. Up to now, no direct experimental bulk modulus is available to be compared
with our theoretical results. Therefore, we choose Ti3AlC2 as a reference compound, which
has close relationships with M2AlC not only in crystal structure but also in macro-properties.
The computed results of Ti3AlC2 yield 160 GPa for the bulk modulus and 131 GPa for the
shear modulus, while the experimental values are 165 and 124 GPa [14], respectively. Good
agreement between computational and experimental values is achieved, which ensures the
reliability of the computed data for the (Mx M′

2−x)AlC phases.
The bulk moduli of the (MxM′

2−x)AlC phases as a function of VEC are plotted in
figure 2(a), where the broken lines represent the average value of the two end M2AlC
and M′

2AlC phases for various substitution contents. We note that the bulk modulus of
(Mx M′

2−x)AlC is close in magnitude to the average value for the substitution content x (as
well as the VEC) changes: BMx M′

2−x AlC(x) ∼= x BM2AlC + (2 − x)BM′
2AlC. The deviation from

the average data is within 4 GPa for all compounds considered in the present work, which
indicates that the bulk moduli of (Mx M′

2−x)AlC systems are well related to a generalized
parameter x (as well as the VEC). It further indicates that the bulk modulus is predictable
when tuning the chemical content in the solid solutions. The bulk moduli of solid solutions
increase monotonically as VEC increases, and improve more effectively in going from Ti2AlC
to V2AlC than from V2AlC to Cr2AlC. The bulk modulus is increased by 38 GPa when V
atoms completely replace the Ti atoms. As one proceeds from V2AlC to Cr2AlC, the bulk
modulus increases by only 18 GPa.
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Figure 2. Theoretical (a) bulk moduli and (b) shear moduli c44 of Mx M′
2−x AlC as a function of

valence electron concentration. Full circles represent the results of Tix V2−x AlC and Vx Cr2−x AlC,
and triangles represent the data of Tix Cr2−x AlC.

Table 1. Calculated second-order elastic constants ci j (in GPa), bulk modulus B0 (in GPa) and
Young’s modulus E (in GPa) of Mx M′

2−x AlC (M, M′ = Ti, V and Cr).

c11 c12 c13 c33 c44 B0 E

Ti2AlC 308 55 60 270 111 137 Ex = 290
Ez = 250

Ti1.5V0.5AlC 291 53 83 275 119 144 Ex = 263
Ez = 235

TiVAlC 300 78 89 272 129 154 Ex = 262
Ez = 230

Ti0.5V1.5AlC 335 75 92 308 142 166 Ex = 299
Ez = 267

V2AlC 346 71 106 314 151 175 Ex = 306
Ez = 261

V1.5Cr0.5AlC 359 72 105 319 154 178 Ex = 303
Ez = 260

VCrAlC 358 75 111 331 153 183 Ex = 315
Ez = 273

V0.5Cr1.5AlC 363 73 114 344 154 186 Ex = 321
Ez = 284

Cr2AlC 384 79 107 382 147 193 Ex = 347
Ez = 332

Cr1.5Ti0.5AlC 349 71 93 316 147 170 Ex = 316
Ez = 275

CrTiAlC 325 70 91 302 139 162 Ex = 292
Ez = 261

Cr0.5Ti1.5AlC 311 58 77 283 124 147 Ex = 285
Ez = 251

When predicting the hardness, one should go beyond the bulk modulus and consider the
shear modulus. According to the Voigt approximation, the shear modulus G, on the one hand,
is not a good candidate for a hardness predictor because it is also an average of single-crystal
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elastic constants [15]:

GV = 1
15 (2c11 + c33 − c12 − 2c13) + 1

5 (2c44 + c66) (1)

for a unit cell with hexagonal symmetry. On the other hand, only the c44 (rather than the c66,
the difference between c11 and c12), among the various shear stiffnesses, by itself represents
a shape change without volume change and provides direct information about the hardness
involved in indentation [6]. Therefore, we examine the correlation between c44 and VEC for
(Mx M′

2−x)AlC compounds.
Figure 2(b) illustrates the computed c44 at various VEC for (MxM′

2−x )AlC solid solutions.
The upper broken curve is the polynomial fit to the theoretical c44 of Tix V2−x AlC and
Vx Cr2−x AlC solid solutions, and the lower curve is that for TixCr2−x AlC. One should
note in figures 2(a) and (b) that the elastic moduli of Tix Cr2−x AlC are smaller than those
of Tix V2−x AlC and VxCr2−x AlC when the VEC yields the same value. This can be explained
by the larger atomic size and valence electron differences between Cr and Ti, which lead to
less phase stability of Tix Cr2−x AlC [4]. The most interesting feature is that the shear modulus
c44 saturates to a maximum value for VEC in the range 8.4–8.6. A similar trend was observed
for transition-metal carbonitrides, in which the c44 and micro-hardness simultaneously reach
a maximum at the VEC value of ∼8.4 [6]. If the rules for transition-metal carbonitrides are
applicable to the presently studied compounds, this class of ternary carbides would exhibit
maximal hardness for VEC in the appropriate range. In other words, solid solution hardening
might be operative in VxCr2−x AlC alloys in a certain VEC range.

3.2. Electronic band structure

To understand the trends in elastic moduli common to all these materials on a fundamental
level, the characteristics of the electronic band structure of (Mx M′

2−x)AlC are examined. We
intend to interpret the trends in elastic stiffness by illustrating the occupation of additional
valence electrons in certain electronic states. It is found that the features of electronic band
dispersion curves and total DOS (e.g. the peak structures and relative heights of the peaks
in DOS) are rather similar, which shows that the electronic structure is well described by
the rigid-band model for (MxM′

2−x)AlC. Therefore, taking V0.5Cr1.5AlC as an example, the
electronic structure is representatively discussed in the present paper.

Characteristics of atomic bonding can be clearly illustrated by the projected density of
states (PDOS). We perform the projection of the plane-wave electronic states onto a localized
linear combination of atomic orbital basis sets. Then the total electronic DOS is decomposed
according to site and angular momentum. The PDOS of V0.5Cr1.5AlC is illustrated in figure 3.
The states, which are approximately located between −7.5 and −3.5 eV below the Fermi level,
originate from the hybridization of transition-metal 3d–C 2p orbitals. Detailed electronic band
structure analysis demonstrates that the peaks located at about −4.5 and −4.0 eV below EF

are due to the hybridization of d(t2g)–(px,py) and d(t2g + e2g)–pz bonding states between
transition-metal and carbon atoms, respectively. The states located at adjacent higher energy
levels, extending between −3.7 and −1.0 eV, are dominated by d(eg)–p covalent bonding
orbitals between transition-metal and Al atoms. The largest contribution to states near Fermi
level comes from metal-to-metal dd interactions.

The bonding states derived from M(M′)–C dp interactions are located far below the
Fermi level and are disturbed slightly as VEC varies. Therefore, theoretical trends in elastic
stiffness are decided by characteristics of bonding states near the Fermi level. Attentions are
concentrated to occupation of M(M′)–Al dp bonding and metal-to-metal dd bonding. The
occupation of pd bonding states can be illustrated by examining the energy range of M(M′)–
Al dp bonding states in solid solutions. For the case of V2AlC, the energy level of V–Al dp
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Figure 3. Site and angular momentum projection of the electronic density of states of V0.5 Cr1.5AlC.

bonding states spreads from −3.388 to 0.258 eV, which indicates that these states are partially
occupied, whereas the energy level of the V(Cr)–Al dp bonding states shifts downward and
extends from −3.732 to −0.956 eV in V0.5Cr1.5AlC, which shows that the corresponding states
are completely filled. We also examine the corresponding energy level in V1.5Cr0.5AlC and
the value extends from −3.435 to −0.618 eV. Therefore, the M(M′)–Al dp bonding starts to
saturate as VEC is located between those of V2AlC and V1.5Cr0.5AlC.
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Figure 4. Valence electron density of M(M′)–Al pd bonding in V0.5Cr1.5AlC. The plot is in the
(112̄0) plane and the unit is electrons/Å3.

According to the discussions, trends in moduli as VEC is varying can be exactly understood
in terms of electronic structure. Figure 2(a) shows that the moduli increase more significantly in
going from Ti2AlC to V2AlC than from V2AlC to Cr2AlC. The reason is attributed to different
occupation of valence electrons in various solid solutions. The valence electrons progressively
fill pd bonding states in the TixV2−x AlC system and lead to effectively improved bulk moduli,
whereas, in the Vx Cr2−x AlC solid solutions, the pd bonding states saturate, starting from
V1.5Cr0.5AlC. In turn, nearly all the extra valence electrons fill the d orbitals provided by
transition-metal atoms. Grossman et al [16] computed the bulk modulus of some selected first-
row transition-metal solids and found that the bulk modulus of pure elements increased as the
number of valence electrons increased. Thereby, enhancement of the dd metallic interactions
is also beneficial to enhance the bulk moduli of the (MxM′

2−x)AlC phases.
On the other hand, shear stiffness c44 is effectively increased only by strengthening the

M(M′)–Al pd covalent bonding. The maximum in c44 originates from the complete filling of the
shear resistive dp-derived bonding states between M(M′) and Al atoms. Excessive occupation
of the dd bonding gives rise to a negative contribution to the elastic shear resistance, such
as the reduced c44 of Cr2AlC. Similar phenomena have been reported for transition-metal
carbonitrides [6].

In addition, we decompose the total charge density into contributions from M(M′)–Al pd
bonding, and illustrate the result for the (112̄0) plane of V0.5Cr1.5AlC in figure 4. The unit of
charge density is electrons Å−3 in the figure. We note that the electron densities centred on
neighbouring Cr and Al atoms, and V and Al atoms, are nearly the same. Therefore, similar
bonding strengths of M(M′)–Al pd covalent interactions are well established in (MxM′

2−x )AlC,
which leads to predictable trends in bulk and shear stiffness.



Ab initio elastic stiffness of nano-laminate (Mx M′
2−x )AlC (M and M′ = Ti, V and Cr) solid solution 2827

4. Conclusions

We have predicted the theoretical elastic stiffness of nano-laminate (Mx M′
2−x)AlC solid

solutions, where M and M′ are Ti, V and Cr, by means of the ab initio pseudopotential total
energy method. Trends in bulk modulus and shear modulus c44 are presented for the solid
solutions. The bulk modulus of (Mx M′

2−x)AlC is approximately the average of the two end
M2AlC and M′

2AlC phases as the substitution content, as well as the VEC, changes. The
shear modulus c44, which has a direct relationship with hardness, saturates to a maximum as
VEC is in the range 8.4–8.6. Our results indicate that the elastic stiffness is predictable when
tuning the chemical components in M2AlC phases. We show that an increment of the bulk
modulus contributes to additional valence electrons occupying states involving M(M′)d–Al p
covalent bonding and metal-to-metal dd bonding. The maximum in c44, on the other hand,
originates from completely filling the shear resistive M(M′)d–Al p bonding states. In addition,
a predictive method is presented to optimize the desired elastic stiffness by properly tuning the
VEC of (MxM′

2−x )AlC ceramics.
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